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Figure 1: Modeling physically realistic human motion from uncalibrated monocular video sequences.

Abstract

This paper presents a video-based motion modeling technique for
capturing physically realistic human motion from monocular video
sequences. We formulate the video-based motion modeling pro-
cess in an image-based keyframe animation framework. The sys-
tem first computes camera parameters, human skeletal size, and a
small number of 3D key poses from video and then uses 2D image
measurements at intermediate frames to automatically calculate the
“in between” poses. During reconstruction, we leverage Newto-
nian physics, contact constraints, and 2D image measurements to
simultaneously reconstruct full-body poses, joint torques, and con-
tact forces. We have demonstrated the power and effectiveness of
our system by generating a wide variety of physically realistic hu-
man actions from uncalibrated monocular video sequences such as
sports video footage.

Keywords: Video-based motion capture, performance animation,
physics-based animation, data-driven animation, interactive 3D vi-
sual tracking, vision for graphics

1 Introduction

One of the most popular and successful approaches for creating
natural-looking human characters is to use motion capture data.
Although we have made great strides in using data to model and
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synthesize human motion in the past decade, current motion cap-
ture technologies are often restrictive, cumbersome, and expensive.
Optical and magnetic motion capture systems must be operated in
carefully calibrated, restrictive lab settings, inhibiting the possibil-
ity of acquiring outdoor activities. Inertial or mechanical systems,
on the other hand, are not constrained by a fixed capture space, but
require the subject to wear cumbersome sensors or confined exo-
skeletons, reducing the naturalness and quality in the performance.

One way to address these limitations is to use standard video cam-
eras to capture live performances in 3D. The minimal requirement
of a single video camera is particularly appealing, as it offers the
lowest cost, a simplified setup, and the potential use of legacy
sources such as film footage. Graphics and vision researchers have
been actively exploring the problem of video-based motion capture
for many years, and have made great advances. However, these
results are often vulnerable to ambiguities in the video data (e.g.,
occlusions, cloth deformation, and illumination changes), degen-
eracies in camera motion, and a lack of discernible features on a
human body.

In this paper, we present a video-based motion capture technique
for modeling physically realistic 3D human motion from uncal-
ibrated monocular video sequences such as sports video footage
(Figure 1). Our technique combines the power of automatic com-
puter vision techniques and physics-based motion modeling tech-
niques to generate 3D human motion with a high degree of physi-
cal realism. The use of physics-based dynamics models for video-
based motion modeling produces three benefits. First and foremost,
it significantly reduces ambiguities in video-based motion model-
ing, producing more accurate motions that naturally obey the laws
of physics. Second, it allows us to properly model interactions with
the environment (e.g., ground contact) as well as balance during lo-
comotion. Third, it enables us to compute joint torques and contact
forces from input video sequences, a capacity which has not been
demonstrated in previous video-based motion modeling work.

We formulate the video-based motion modeling process in an
image-based keyframe animation framework. Our system consists
of two main steps: interactive 3D keyframe modeling and image-
based 3D keyframe interpolation. The user first selects a small set
of keyframe images from the input video and annotates each of
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them with a small number of 2D constraints. The system then au-
tomatically computes human skeletal size and 3D key poses from
the annotated 2D constraints. In the second step, the system tracks
2D image features at intermediate frames and uses them to inter-
polate 3D motion between the key frames. During reconstruction,
we leverage Newtonian physics and 2D image measurement to si-
multaneously reconstruct full-body poses, joint torques, and contact
forces. In addition, our system allows the user to briefly review the
result by playing back the interpolated motion and incrementally
edit the result at any frame if the reconstructed motion does not
precisely match the input video sequence.

We demonstrate the power and effectiveness of this system by mod-
eling a wide variety of human actions from monocular video se-
quences such as Internet videos and sports footage. We show that
our system can model physically realistic motion for highly dy-
namic motion such as gymnastics, low energy motion such as walk-
ing, interaction with environments such as sitting and standing up,
and multiple actor interaction such as fencing (Figure 1). We assess
the quality of the reconstructed motion by comparing with high
quality motion data captured with a full marker set in a twelve-
camera optical motion capture system.

2 Background

Our system combines 2D image data and physics-based dynamics
models to capture physically realistic human motions from monoc-
ular video sequences. We therefore discuss related work in model-
ing 3D human motion from monocular video sequences as well as
physics-based motion modeling.

One way to model 3D human motion from monocular video
sequences is model-based motion tracking [Bregler et al. 2004],
which initializes a 3D human pose at the starting frame and se-
quentially updates 3D poses by minimizing the image differences
between two consecutive frames. The approach, however, has many
restrictions because it often assumes known human skeletons and
requires manual initialization of the 3D pose at the first frame.
More importantly, the approach is often vulnerable to occlusions,
cloth deformation, illumination changes, and a lack of discernible
features on human body because 2D image measurements are of-
ten noisy and insufficient to determine high-dimensional 3D human
movement.

An efficient way to reduce the modeling ambiguities is to utilize
kinematic motion priors embedded in prerecorded motion data.
Thus far, two different approaches have been taken, including gen-
erative approaches [Howe et al. 1999; Pavlović et al. 2000; Siden-
bladh et al. 2002; Sminchisescu and Jepson 2004; Chai and Hod-
gins 2005; Urtasun et al. 2005; Chen and Chai 2009] and discrimi-
native models [Rosales and Sclaroff 2000; Elgammal and Lee 2004;
Agarwal and Triggs 2006; Kanaujia and Metaxas 2007]. However,
data-driven approaches can only model motions that are similar to
training datasets. This significantly limits their application to video-
based motion capture. Another limitation is that these approaches
do not consider the dynamics that cause motion. When motion data
is generalized to achieve new goals, the results are often physically
implausible, displaying noticeable visual artifacts such as unbal-
anced motions, foot sliding, and motion jerkiness.

Several researchers have recently started to employ physics-
based models of human motion for video-based motion track-
ing [Brubaker and Fleet 2008; Vondrak et al. 2008]. For ex-
ample, Brubaker and Fleet [2008] introduced a low-dimensional
biomechanically-inspired model that accounts for human lower-
body walking dynamics and used it to track human motion in a
recursive Bayesian framework. However, the model, while power-
ful, is inherently limited to walking motions in 2D. Vondrak and

his colleagues [2008] adopted a full-body 3D dynamics model and
combined it with motion capture data to constrain the search space
for Bayesian motion tracking. Their approach has been shown to be
effective for tracking walking and jogging motion. However, it is
not clear how this approach can be extended to model the wide va-
riety of human actions reported in our paper because they also used
motion capture data to reduce the solution space. Furthermore, their
methods are specifically tailored towards online vision applications
such as visual surveillance, and thus do not address the range of
applications in computer graphics targeted in this work.

Our work builds on the success of physics-based optimization tech-
niques for human motion modeling. Physics-based motion opti-
mization, first introduced to the graphics community by Witkin and
Kass [1988], provides a powerful framework for generating human
motion from user constraints, physics constraints, and a perfor-
mance objective that measures the performance of a generated mo-
tion. These methods have recently been extended to 3D full-body
animation with the help of simplified physical models [Popović and
Witkin 1999], reduced dimension subspaces [Safonova et al. 2004],
initializations derived from motion capture data [Sulejmanpasic and
Popović 2005], and performance objectives optimized from refer-
ence motion data [Liu et al. 2005]. Our work shares the use of
optimization procedures to model physically realistic motions. It
differs in that we utilize physics-based dynamics models to match
human motion in video data. The use of image data for physics-
based motion modeling ensures that the generated motion is not
only physically plausible but also natural-looking.

Our work draws inspiration from systems that utilize user assis-
tance for video-based human motion modeling [Cowley and Taylor
2001; DiFranco et al. 2001; Loy et al. 2004]. Taylor [2000] pre-
sented an interactive system to model 3D key poses from 2D im-
ages; later the system was extended to video-based motion interpo-
lation [Cowley and Taylor 2001]. However, this interpolation does
not utilize image measurements at intermediate frames and there-
fore requires intensive user interaction to achieve good results. The
approach was recently extended by Loy and his colleagues [2004].
They interpolated the motion by minimizing the image projection
error while keeping limb lengths constant. DiFranco and his col-
leagues [2001] used a similar batch-based optimization process to
interpolate the motion based on 2D joint trajectories defined at in-
termediate frames; however, they assumed a known human skeletal
model, predefined 3D key poses, and predetermined joint trajecto-
ries at intermediate frames.

Our approach is different in that we leverage Newtonian dynam-
ics and image measurements to interpolate the motion. The use
of physical constraints for motion modeling not only reduces the
modeling ambiguity but also ensures that the reconstructed motion
is physically correct. Our system is also more flexible because it
assumes unknown skeleton sizes as well as uncalibrated cameras.
In addition, the system does not require predefined 2D joint trajec-
tories, which significantly reduces the amount of user intervention
needed for video-based motion modeling. Another distinction is
that our work incorporates environmental contacts into the video-
based motion modeling process and thereby removes noticeable vi-
sual artifacts such as foot sliding and ground penetration, which are
commonly seen in previous video-based motion modeling systems.

3 Overview

Our system creates physically realistic human motion from un-
calibrated monocular video sequences with minimal user interac-
tion. We formulate the video-based motion modeling process in an
image-based keyframe animation framework. The system first es-
timates a small set of 3D key poses and human skeletal sizes with
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minimal user interaction, and then interpolates them automatically
using physical constraints as well as image measurements at inter-
mediate frames. Here we highlight the issues that are critical for the
success of this endeavor and summarize our approach for address-
ing them.

Interactive 3D keyframe modeling. Our system models 3D
keyframe poses using 2D image data, rather than the talents of
artists/animators. The first challenge of our system is therefore how
to estimate a small set of 3D key poses from 2D image sequences.
The problem is challenging because we are dealing with a single
moving camera. In addition, neither camera parameters nor human
skeletal sizes are known. To address this challenge, we have intro-
duced an efficient algorithm to simultaneously computing 3D key
poses, human skeletal sizes, and camera parameters from a number
of 2D image constraints annotated by the user.

Image-based 3D keyframe interpolation. Another challenge for
our system is how to utilize image measurements at intermediate
frames to interpolate 3D key frames. We have developed an ef-
ficient algorithm to automatically track 2D image constraints at
intermediate frames. In addition, we have introduced a physics-
based optimization algorithm to generate in-between motions from
2D tracking results. Another nice feature of the proposed system is
motion refinement. The user can briefly review the interpolated mo-
tion, edit the interpolated motion at any point in time, and continue
refining the result until the interpolated motion precisely matches
the input video.

We describe these components in more detail in the next sections.

4 Interactive 3D Keyframe Modeling

Our dynamics models approximate human motion with 17 rigid
body segments, which include head, neck, back, left and right clav-
icle, humerus, radius, hip, femur, tibia, and metatarsal. We de-
scribe a full-body pose using a set of independent joint coordinates
q ∈ R37, including absolute root position and orientation as well as
the relative joint angles of individual joints. We represent the skele-
tal size of a human figure using a long vector l = [l1, ..., l17]

T ,
where lb, b = 1, ..., 17 is the length of the bth bone segment.

The goal of our interactive 3D keyframe modeling step is to esti-
mate a small number of 3D key poses (q1, ..., qK ) as well as the
skeletal size (l) from video with minimal user interaction. Our idea
for achieving this goal is to allow the user to annotate 2D joint lo-
cations at keyframe images and use them to automatically compute
3D key frames and human skeletal size (Figure 2). We choose to use
2D joint positions for 3D keyframe modeling because they could be
easily annotated by a novice user from input image sequences. In
our system, the key frames often correspond to the instants when
contact state changes occur and/or instants with the highest visual
content change.

4.1 Camera Parameter Estimation

Our system works for both static cameras and moving cameras.
For moving cameras, structure and motion analysis is carried out
on the input video sequence before any interactive human motion
modeling takes place. Structure and motion analysis is a computer
vision technique that automatically reconstructs the camera param-
eters which describe the relationship between the camera and the
scene. We use MatchMover [2008] to estimate both intrinsic and
extrinsic camera parameters ~ρ = (tx, ty, tz, θx, θy, θz, f), where
the parameters (tx, ty, tz), (θx, θy, θz), and f describe the posi-
tion, orientation and focal length of the camera, respectively. The
MatchMover system works well for both pan-tilt-zoom cameras and

Figure 2: Three types of 2D image constraints are annotated for
3D keyframe modeling. The user specifies 2D joint positions, bone
direction constraints, and environmental contact constraints. The
positional contact constraints are enforced at ankle and toe joints,
and distance contact constraints are enforced at two hands. For
bone directional constraints, the blue line indicates the parent joint
is closer to the camera, and the white line indicates the bone seg-
ment is parallel to the image plane.

rotating and translating cameras with unknown and varying focal
lengths.

When an input video is taken by a static camera with a constant
focal length, structure from motion analysis techniques cannot be
used to estimate camera parameters. Our solution is to automat-
ically estimate the focal length of the camera along with 3D key
poses and skeletal size in the 3D keyframe modeling step (Section
4.2). For simplicity of discussion, we focus our discussion on cap-
turing human motion using static cameras. However, the basic re-
construction scheme that will be proposed in this section can easily
be extended to moving cameras with camera parameters estimated
by MatchMover.

4.2 Interactive 3D Keyframe Modeling

We now discuss how to model 3D key poses and human skeleton
sizes from a number of 2D joint constraints specified by the user.
The problem is challenging because 2D joint constraints are often
not sufficient to determine 3D poses of an articulated object with an
unknown skeletal size [Taylor 2000]. Our proposed reconstruction
algorithm builds upon our previous work on structure from motion
for articulated objects [Wei and Chai 2009]. More specifically, we
define an energy function as a combination of cost functions de-
scribed in the previous work and a new cost function measuring
how well contact constraints are satisfied. We also extend the pre-
vious system to a full perspective camera model because a weak
perspective camera model was adopted in the previous system.

Mathematically, we compute the human skeletal size l and 3D key
poses q1, ..., qK as well as the focal length of the camera f by
minimizing the following energy function:

argminq1,...,qK ,l,f Ep + λsEs + λrEr + λcEc

subject to Ed ≤ 0
(1)

where the bone projection constraints (Ep) consider the relationship
between 3D end points of bone segments and their 2D projections
in image space (i.e., 2D joint locations). The bone symmetry con-
straints (Es) ensure the reconstructed human skeleton is symmetric;
symmetry is imposed on seven bones, including clavicle, humerus,
radius, hip, femur, tibia, and metatarsal. The rigid body constraints
(Er) preserve the distances between any two points located on the
same rigid body regardless of the movement of a human body. The
aforementioned constraints, however, are often insufficient to re-
duce reconstruction ambiguity. This is because there are two possi-
ble solutions for the relative depths of each bone segment at every
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key frame, representing the pose ambiguity that has been previously
discussed in the work of Taylor [2000]. The system allows the user
to specify bone directional constraintsEd to remove this ambiguity.

In practice, we find that reconstructed 3D key poses often violate
environmental contact constraints because 2D joint locations spec-
ified by the user are often noisy. This is always undesirable for
graphics applications since this directly leads to noticeable visual
artifacts such as foot-sliding in output animation. To address this
issue, the system allows the user to specify the environmental con-
tact constraintsEc. The user can define two types of environmental
contact constraints: positional contact constraints and distance con-
straints (Figure 2). The positional contact constraints fix a specific
point on the actor to a stationary location at multiple key frames.
For example, when an actor sits on a chair, both of his feet stick on
the ground for a short period of time. The distance constraints pre-
serve the 3D distance between two points. For example, when an
olympic athlete is weightlifting, the distance between his two hands
should be maintained.

We have observed that direct optimization of the constrained ob-
jective function in Equation (1) often produces poor results. The
optimization is prone to get trapped at local minima, due to there
being a highly nonlinear optimization function related to joint an-
gle representation as well as the use of inequality constraints. The
performance of the optimization algorithm strongly depends on the
initialization of the optimization. Similar to Chai and Wei [2009],
we choose to represent 3D key poses with 3D root positions pk and
relative depth values dZk of inboard joints and outboard joints of
every bone segment.

Initialization. To obtain a good initial guess for unknowns, we
remove the bone directional constraints and environmental contact
constraints from the objective function, and optimize the objective
function with respect to focal length (f ), skeletal size (l), and key
poses (pk, dZ2

k, k = 1, ...,K). Note that dropping off the bone
directional constraints will not affect the reconstruction accuracy
because the bone directional constraints are used to eliminate the
ambiguity caused by the signs of relative depth values dZk. Mean-
while, removal of the contact constraints does not significantly af-
fect the reconstruction accuracy because the contact constraints are
mainly used for eliminating environmental contact artifacts (e.g.,
foot-sliding) caused by noisy joint locations. This allows us to
transform a notoriously difficult constrained optimization problem
into a well-behaved unconstrained optimization problem. We ana-
lytically derive the Jacobian terms of the object function and then
run the optimization with the Levenberg-Marquardt algorithm in
the Levmar library [Lourakis 2009].

Optimization. We now can set very good initial values for the
constrained optimization problem in Equation (1). More specifi-
cally, we initialize f, l, pk, dZk, k = 1, ...,K with the correspond-
ing values estimated from the initialization step. The values of dZk
are initialized by the root square of the estimated dZ2

k with appro-
priate signs determined by the bone directional constraints. The
optimization typically converges in less than ten iterations due to a
very good initial guess.

The last step of 3D keyframe modeling process is to use inverse
kinematics techniques to transform key poses from 3D position
space to 3D joint angle space. The 3D keyframe modeling process
takes three to eight seconds for all the videos reported in this pa-
per. Figure 2 visualizes three types of 2D image constraints (joint
locations, bone directions, and contact constraints) specified at a
key frame. We also show the reconstructed 3D key pose and human
skeleton model in the same figure.

Figure 3: 2D multi-joint tracking: (left) tracked bone segments
superimposed on images; (middle) the state vector for tracking one
leg is represented as et = {x1

t , x2
t , x3

t , x4
t}; (right) The histogram

feature vector for each bone segment. The resulting feature vector
for the leg stacks the feature vector of each individual bone segment
(upper leg, lower leg, foot).

5 Image-based 3D Keyframe Interpolation

This section discusses how to interpolate 3D key frames q1, ..., qK
using 2D image measurements at intermediate frames. Our key idea
is to use both image measurements and physical constraints to inter-
polate in-between poses. Briefly, our system interactively tracks a
small set of 2D joint points at intermediate frames (Section 5.1) and
uses the tracked 2D joints as well as physical constraints to inter-
polate the 3D key frames (Section 5.2). The user can briefly review
the result by playing back the interpolated motion superimposed
on the input video sequence, and incrementally edit the result at
any frame until the interpolated motion precisely matches the input
video sequence (Section 5.3).

5.1 Keyframe based 2D Multi-joint Tracking

The first component of video-based motion interpolation is to use
2D joint positions annotated at key frames to track 2D joint loca-
tions at intermediate frames. In practice, it is almost impossible to
track every joint accurately due to various ambiguities (e.g., signif-
icant occlusions) present in monocular video sequences. We, in-
stead, allow the user to interactively select which joints to track.
The user could choose to either track a single bone segment (e.g.,
head), or simultaneously track multiple connected bone segments
from the same limb (e.g., upper leg, lower leg, and foot).

We represent the state of a single bone segment as et = {x1
t , x2

t},
where x1

t and x2
t are the 2D image coordinates of the inboard and

outboard joints, respectively. Similarly, the state of multiple con-
nected bone segments can be represented by a long vector sequen-
tially stacking the 2D coordinates of all end points. For example,
consider a limb consisting of three bone segments: upper leg, lower
leg and foot. The state of the limb is represented by the 2D positions
of four end points et = {x1

t , x2
t , x3

t , x4
t} (Figure 3).

Let e1 and eT represent the states of the start and end frames,
respectively. Our goal here is to track the object state et, t =
2, ..., T − 1 at intermediate frames.

Feature vector. We approximate the 2D shape of a bone segment
with an elliptic region. We choose to represent the appearance of
the bone segment as a regularized histogram distribution of all pix-
els within the elliptic region in Hue-Saturation-Value (HSV) color
space because the histogram distribution is robust to image noise,
cloth deformation, and occlusions. The feature vector of a target
region at the frame t can then be represented as a vector-valued
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Figure 4: Keyframe based 2D multi-joint tracking: the first and last frames are the annotated keyframe images. The user interactively selects
which joints to track and the system automatically tracks their locations at intermediate frames.

function of the state et (for details, see Appendix A):

h(et) = (h1(et), . . . , hM (et))T ,
M∑
m=1

hm(et) = 1, (2)

where h(et) represents the current target model in the feature space
and M is the total number of bins used in the HSV color space.
The function hm(et) is the density of the mth bin. For multiple
connected bone segments, we represent the feature vector of multi-
ple connected regions as a long vector that sequentially stacks the
feature vector of each individual bone hs(et), s = 1, ..., S, where
S is the number of connected bone segments (Figure 3).

Parameterized template model. We assume that the template
model for any in-between frame can be represented as a weighted
interpolation of the feature vectors at the start and end frames:

Hm(βt) = βthm(e1) + (1− βt)hm(eT ), m = 1, ...,M (3)

where the parameter βt ranges between 0 and 1 and is assumed
to be unknown. One nice feature of the parameterized template
models is to model possible appearance changes between two key
frames with the time varying weight βt [Wei and Chai 2008].

Matching distance. We estimate the states of the bone segments at
intermediate frames by matching the parameterized template model
H(βt) with the target region h(et) in the feature space. We use the
Bhattacharyya distance to measure the matching distance between
the target region and the parameterized template model:

d(et, βt)2 = 1−
M∑
m=1

√
hm(et)Hm(βt). (4)

where d(et, βt)2 represents the matching cost between the template
model and the target region. To deal with occlusions and image
noise, we apply robust statistics [Huber 1981; Hampel et al. 1986]
to measure the residual distance. In our experiment, we choose the
Lorentzian robust estimator to define the matching cost term:

ρ(d(et, βt)2) = log(1 +
d(et, βt)2

2σ2
) (5)

where the scalar σ is a parameter for the robust estimator. For all
examples reported in the paper, σ is set to 0.25.

Objective function. We now can formulate the keyframe based
2D joint tracking process in a batch-based optimization framework.
Our system computes the “best” state trajectory e2,...,eT−1 as well
as the unknown template parameters βt, t = 2, ..., T − 1 by opti-
mizing over all intermediate frames at once:

arg min{et},{βt}
∑T−1

t=2
ρ(d(et, βt)2) + λe

∑T

t=2
‖et − et−1‖2

+λβ
∑T

t=2
(βt − βt−1)

2

(6)

where the first term minimizes the matching cost between the tem-
plate model and the target region. The second and third terms pe-
nalize the sudden changes of the state et and appearance βt of the
target region. The weights λe and λβ are set to 0.0015 and 0.5
respectively.

Real-time optimization. We initialize the states of in-between
frames by a linear interpolation of the first and last frames. We
optimize the objective function with trust-region reflective Newton
methods. The gradient of the energy function is analytically eval-
uated at each iteration. We found that the optimization procedure
often converges quickly (usually less than 20 iterations). The cur-
rent multi-joint tracking system can track 2D joint locations at in-
teractive frame rates (less than one second). The interface appears
very responsive because the user can immediately see the tracking
results.

User interaction. The tracking system is fairly robust to occlu-
sions and illumination changes as well as noise caused by cloth
deformation and motion blurring. However, due to the complexity
of a real world, it is almost impossible to build a fully automatic
system that can accurately track 2D joint locations at intermedi-
ate frames. When the tracker fails, user interaction must be used
to correct tracking errors. The realtime batch optimization process
provides an efficient way to combine user interactions with an au-
tomatic vision process. The user can refine the tracking result at
any frame, include new constraints as a part of the object function,
and restart the optimization. Figure 4 shows sample images of our
tracking result.

5.2 3D Motion Interpolation

The second component of video-based motion interpolation is to
use 2D tracking joints to interpolate 3D key frames. This prob-
lem is challenging because the number of constraints derived from
the 2D joint tracking system is often not sufficient to determine a
unique solution for in-between motion. In practice, real video se-
quences often contain significant occlusions, which make it almost
impossible to track end points of every bone segment. So there will
be a space of possible solutions that meet the image constraints de-
rived from video. We eliminate this ambiguity with physics-based
dynamics constraints.

Full-body dynamics. The Newtonian dynamics equations for full-
body movement can be defined as follows:

M(q)q̈ + C(q, q̇) + h(q) = u + JTc fc (7)

where q, q̇, and q̈ represent the joint angle poses, joint velocities,
and joint accelerations, respectively. The quantities M(q), C(q, q̇)
and h(q) are the joint space inertia matrix, centrifugal/Coriolis and
gravitational forces, respectively. The vectors u and fc are joint
torques and contact forces respectively. The contact force Jacobian
matrix Jc maps joint velocities to world space cartesian velocities at
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Sequences No. of frames Camera types No. of key frames No. of tracking joints per frame Refinement A Refinement B
Uneven bar 150 pan-tilt-zoom 10 10 0 7

Acting 585 static 9 10 2 0
Weightlifting 310 pan-tilt-zoom 13 11 3 4

Fencer A 92 pan-tilt-zoom 6 12 0 0
Fencer B 92 pan-tilt-zoom 6 14 0 0
Jumping 100 static 6 12 0 4
Frisbee 114 static 6 10 0 0

All examples 1443 56 11 5 15

Table 1: Details of our experiments. Refinement A counts the total number of secondary keyframes used in motion refinement, and Refinement
B counts the total number of 2D joint constraints used for motion refinement.

contact points. Human muscles generate torques about each joint,
leaving global position and orientation of the body as unactuated
joint coordinates. The movement of global position and orienta-
tion is controlled by contact forces fc. Modifying those coordinates
requires contact forces fc from the environment.

Friction limit constraints. During ground contact, the feet can
only push, not pull on the ground, contact forces should not require
an unreasonable amount of friction, and the center of pressure must
fall within the support polygon of the feet. We use Coulomb’s fric-
tion model to compute the forces caused by the friction between
the character and environment. A friction cone is defined to be the
range of possible forces satisfying Coulomb’s function model for
an object at rest. We ensure the contact forces stay within a ba-
sis that approximates the cones with nonnegative basis coefficients.
We model the contact between two surfaces with multiple contact
points m = 1, ...,M . This allows us to represent the contact forces
fg as a linear function of nonnegative basis coefficients [Pollard and
Reitsma 2001; Liu et al. 2005]:

fg(w1, ...,wM ) =

M∑
m=1

Bmwm subject to wm ≥ 0 (8)

where the matrix Bm is a 3 × 4 matrix consisting of 4 basis vec-
tors that approximately span the friction cone for the m-th contact
force. The 4 × 1 vector wm represents nonnegative basis weights
for the m-th contact force. Note that we do not enforce friction
limit constraints on other types of environmental contact forces fe,
e.g., when the actor is swinging on a high bar or monkey bars or
when the actor is carrying a bag.

Objective function. We now can formulate the motion inter-
polation problem in a space-time motion optimization frame-
work [Witkin and Kass 1988; Cohen 1992]. Given the start and end
poses, contact constraints, and 2D joint positions at intermediate
frames, the optimization simultaneously computes the joint poses
q, joint torques u, and contact forces fg(w) and fe that maximize
the performance of the following multiobjective function:

argminq,u,w,fe Eimage(q) + λ1Etorque(u) + λ2Esmooth(q̈)
subject to M(q)q̈ + C(q, q̇) + h(q) = u + JTc [fg(w)T , fTe ]T

w ≥ 0
Gc = 0

(9)
where the first term Eimage measures how well the interpolated
motion matches the 2D position constraints from tracking joints.
The second term Etorque minimizes the sum of squared torques
at intermediate frames. The third term Esmooth ensures smooth-
ness of the joint angle trajectories and root trajectory over time
by minimizing the sum of squared joint accelerations and sum of
squared root accelerations. The optimization is also subject to the
discretization of Newtonian dynamics equations determined by a fi-

nite difference scheme, friction limit constraints w ≥ 0, and contact
constraints Gc = 0.

Motion optimization. In our implementation, we drop off New-
tonian dynamics equations in the objective function by replacing
joint torques u with M(q)q̈ +C(q, q̇) + h(q)− JTc fc(w). We use
backward difference to compute joint velocities and use central dif-
ference to compute joint accelerations. This allows us to optimize
the entire motion in terms of joint poses qt, t = 2, ..., T − 1 and
contact forces w. We follow a standard approach of representing
qt using cubic B-splines. We solve the optimization problem us-
ing sequential quadratic programming (SQP) [Bazaraa et al. 1993],
where each iteration solves a quadratic programming subproblem.
We initialize the joint poses by a linear interpolation of the start and
end poses.

The 3D motion interpolation process typically takes about five sec-
onds to converge for a 20-frame motion segment. For example, the
”jumping”, ”uneven bar”, and ”acting” examples took 20, 27 and
83 seconds to interpolate the entire video sequences, respectively.

5.3 3D Motion Refinement

3D motion interpolation might not always produce a motion se-
quence that precisely matches the input video sequence because the
2D joint tracking process cannot track 2D locations of all joints at
intermediate frames. When this happens, the user can briefly review
the result by playing back the interpolated motion sequence super-
imposed on the input video sequence, and incrementally edit the
result at any frame until the interpolated motion precisely matches
the input video sequence. The current system supports two types of
user interactions for motion refinement:

Secondary keyframes. When interpolated motions do not closely
match 2D image measurements at intermediate frames, the user can
select an intermediate image as a secondary key frame, which often
corresponds to the poorest reconstruction result, and manually ad-
just 2D joint locations at the secondary keyframes. This allows us to
reconstruct a 3D secondary key pose in the same way as the interac-
tive keyframe modeling process. We use the secondary key poses to
divide the original subsequence into two smaller subsequences and
run the motion interpolation process for each subsequence again.

Interactive 2D joint dragging. When the interpolated motion se-
quence is already close to the input video sequence, the user can
fine tune the result with 2D direct manipulation interfaces. More
specifically, the user picks an unsatisfactory frame, pulls on a sin-
gle joint which is the furthest from the actual image location, and
then restarts the optimization. This human guidance is often enough
to achieve a desired solution. If not, the user may pull on additional
points, and iterate. In each refinement step, we incrementally add
2D joint location constraints, initialize the current motion with mo-
tion from the previous step, and rerun motion interpolation again.
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The refinement process runs in real time because the interpolated
motion is already very close to the final motion.

6 Results

We demonstrate the performance of our system by modeling a
wide variety of human actions from monocular video sequences,
which include locomotion (“walking”), acrobatic motion (“uneven
bar”), highly dynamic motions (“jumping’), sudden burst activities
(“weightlifting”), interactions with environments (“sitting”, “stand-
ing up”, and “picking up an object”), and multiple actor interactions
(“fencing”). Our system works for both static and moving cameras.
Our results are best seen in the accompanying video although we
show sample frames of a few motions in the paper. Table 1 summa-
rizes the experimental details of all testing sequences.

Uneven bar. This video sequence was downloaded from the Inter-
net. The video was taken by a pan-tilt-zoom camera. We used the
MatchMover to estimate full-perspective camera parameters and re-
constructed 3D key frames and human skeleton size based on 2D
image constraints annotated at ten keyframe images, along with the
estimated camera parameters. The system then interactively tracked
2D positions of ten joints at intermediate frames and used them
to interpolate 3D key frames. In the motion refinement step, we
dragged seven points to improve the result. Figure 5 shows some
sample frames of the reconstruction motion from the original view-
point and a new viewpoint (first and second rows). Note that the
green lines visualize the magnitudes and directions of the estimated
contact forces.

Acting. This video sequence was taken by a static and uncal-
ibrated camera. The “acting” sequence contains a variety of ev-
eryday actions, including sitting on a chair, standing up, turning
around, yawning, picking up a box, and walking with a box. We as-
sumed a full perspective camera model. Our system simultaneously
estimated the camera focal length, human skeletal size, and 3D key
poses at nine key frames and used image measurements and phys-
ical constraints to automatically calculate the “in between” poses
and camera parameters. After playing back the reconstructed mo-
tion, the user refined the motion with two secondary key frames.
Some sample frames of the reconstructed motion are shown in Fig-
ure 5 (third and forth rows).

Jumping. We also experimented with a jumping sequence of a
subject seen from an oblique view. Modeling human motion from
this sequence is difficult due to the significant depth change and
the perspective effects of the person jumping closer to the camera.
The accompanying video shows that our algorithm can successfully
estimate the focal length as well as the 3D motion and skeletal size.

Weightlifting. This is another video sequence downloaded from
the Internet. It was taken by a full perspective pan-tilt-zoom cam-
era. Reconstructing human movement from this video is challeng-
ing due to a sudden burst of movement. Some sample frames of the
reconstruction results are shown in Figure 5 (fifth and six rows).

Multiple actor interaction. The video was taken by a full per-
spective pan-tilt-zoom camera. The white fencing clothing makes
it extremely difficult to capture the movements of two fencers. We
captured the motion data of two fencers separately. We used six
key frames to capture the movement of each fencer. No refine-
ments were needed. The final motion is shown in Figure 5 (seven
and eighth rows).

Statistics of user interaction. User interactions are needed for an-
notating 2D joint locations at key frames as well as interactive 3D
motion refinement. The use of physical constraints and 2D image
measurements for 3D motion interpolation minimizes the number

of key frames required for video-based motion modeling. Based on
the testing sequences (1443 frames in total) we reported here, the
users annotated 2D joint locations at 56 keyframe images (3.8%
of the total frames) for video-based motion modeling. The users
also added five secondary key frames (0.3% of the total frames)
and dragged 15 points to refine the interpolated 3D motions. The
total amount of interaction time to create the final 3D motions var-
ied from 5 to 20 minutes depending on the complexity and length
of the motions.

Comparison. The accompanying video shows the importance of
both physical constraints and image measurements to our motion
modeling system. Specifically, we dropped off the terms of the
objective function described in Equation (9) and compared our ap-
proach with 3D keyframe interpolation using linear interpolations,
3D keyframe interpolation using physics-based optimization, and
3D keyframe interpolation using the image term and the smooth-
ness term. The comparison shows that only our approach, i.e., mo-
tion interpolation using both physical constraints and image mea-
surements, can generate a natural-looking animation that matches
the input video.

Evaluation. We quantitatively assessed the quality of the captured
motion by comparing with ground truth motion data captured with
a full marker set in a twelve-camera Vicon system [2009]. The av-
erage reconstruction error, which is computed as average 3D joint
position discrepancy between the estimated poses and the ground
truth mocap poses, was about 4.5 cm per joint per frame. Figure 6
shows a side-by-side comparison between our result and the optical
mocap result. As shown in the accompanying video, the quality of
our reconstruction result is comparable to motion data recorded by
the Vicon system but our system is much cheaper and requires less
intrusive capturing devices.

We also evaluated the 3D/2D matching errors between recon-
structed motions and input video sequences for all the testing exam-
ples. The matching errors were computed by the average pixel dis-
tances between the 2D joint locations of reconstructed motions and
those tracked from input video sequences, i.e., the first term of the
objective function in Equation (9). The errors for different testing
sequences are 2.4 pixels (“acting”), 3.4 pixels (“uneven bar”), 4.1
pixels (“weightlifting”), 2.4 pixels (“fencer A”), 2.8 pixels (“fencer
B”), 2.8 pixels (“jumping”), and 2.1 pixels (“frisbee”), respectively.
Note that the actual matching errors could be much smaller because
2D joint positions tracked from an input video are often very noisy.

7 Conclusion and Discussion

In this paper, we have developed an end-to-end system that mod-
els physically realistic human motion from uncalibrated monocular
video sequences. The key idea of our system is to utilize physics-
based dynamics models and minimal user interaction to remove the
ambiguities in video-based motion modeling. Our system is desir-
able for video-based motion modeling because it does not require
known skeletons, it works for static or moving cameras, it does not
need any prerecorded motion data, and it is capable of modeling
a wide range of human actions from single-camera video streams.
With such a system, live performances and important events such
as memorable Olympic moments can be documented, analyzed, and
animated in 3D.

Our system benefits from the combined power of video-based mo-
tion modeling and physics-based motion modeling. Physics-based
motion modeling is a mathematically ill-posed problem because
there are many ways to adjust a motion so that physical laws are
satisfied, and yet only a subset of such motions are natural-looking.
By accounting for physical constraints and observed image data si-
multaneously, we can estimate physically realistic motion that is
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Figure 5: Modeling a wide variety of human actions from uncalibrated monocular video sequences. The reconstructed motions are rendered
from the original viewpoint and a new viewpoint. Note that green lines visualize magnitude and direction of estimated contact forces.
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(a) (b) (c) (d) (e)

Figure 6: Comparison between our result and ground truth motion data captured by a twelve-camera Vicon mocap system in a full marker
set: (a) input image sequences; (b) our result in the original viewpoint; (c) optical mocap result in the original viewpoint; (d) our result in a
new viewpoint; (e) optical mocap result in a new viewpoint.

consistent with the input image data. On the other hand, video-
based motion modeling techniques can utilize physical constraints
to reduce modeling ambiguities and ensure the reconstructed mo-
tion is physically correct.

We have demonstrated the power and effectiveness of our approach
by capturing a wide variety of human actions from uncalibrated
monocular video sequences (e.g., sports footage). We believe the
system could be easily extended to modeling the movement and
skeletons of articulated animals such as trotting horses or hopping
kangaroos because we assume unknown skeletal sizes and do not
require any prerecorded motion capture data. One of the immediate
directions for future work is, therefore, to investigate the application
of our algorithm to articulated animal movement.

One nice property of our video-based motion modeling system is
that we can estimate joint torques and contact forces from 2D im-
age data. However, when there are multiple contact points between
human bodies and environments, there is not a unique solution of
joint torques and contact forces. When this happens, our system
relies on the “minimum torque” principle to remove the ambiguity.

Recent progress in physics-based motion optimization has shown
that kinematic motion priors can be used to significantly improve
the performance of physics-based motion modeling. In the future,
we would like to adapt the algorithm to incorporate kinematic mo-
tion priors (e.g., [Chai and Hodgins 2005]) into the video-based mo-
tion modeling process in order to improve the robustness and accu-
racy of our system.

APPENDIX

A Feature Model for 2D Multi-joint Tracking

Let nt be the number of pixels located inside the target region at
frame t and pt,i, i = 1, ..., nt be the image coordinates of the i-
th pixel. Mathematically, we can define the function hm(et) as

follows:

hm(et) =

nt∑
i=1

δ(f(I(pt,i))−m) (10)

where the function δ(·) represents the Kronecker delta function.
The function I(pt,i) represents the color of the i-th pixel at the
location pt,i. The function f maps I(pt,i) to the index of its bin in
the quantized feature space.

We regularize the histogram distribution hm(et) by masking the ob-
jects with an isotropic kernel in the spatial domain. When the kernel
weights, which carry continuous information, are used in defining
the feature space representation, the regularized histogram distribu-
tion of target regions becomes a smooth and continuous function of
target states, et.

An isotropic kernel, with a convex and monotonic decreasing kernel
function k(r), is used to assign smaller weights to pixels farther
from the center. We choose the Epanechnikov profile as our kernel
function [Comaniciu and Meer 2002; Wei and Chai 2008]:

k(r) =

{
1− r 0 ≤ r ≤ 1
0 r > 1

(11)

where r ≥ 0. This kernel function makes the regularized histogram
distribution differentiable everywhere inside the elliptical region.
Its gradients can, therefore, be evaluated analytically.

The regularized histogram distribution of the feature in the target
region at frame t is computed as:

hm(et) =

∑nt

i=1
k
(
( u

i

W
)2 + ( v

i

H
)2
)
δ(f(I(pt,i))−m)∑nt

i=1
k
(
( u

i

W
)2 + ( v

i

H
)2
) , (12)

whereW = ‖x1
t −x2

t‖/2 andH is assumed to be known and deter-
mined by the user. The scalars ui and vi are the local coordinates
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of the i-th pixel, which can be computed as follows:(
ui

vi

)
=

(
cos θt sin θt
− sin θt cos θt

)
(pt,i − ct). (13)

where ct = (x1
t + x2

t )/2 and θt = atan2([x2
t − ct]v, [x2

t − ct]u).
Note that [x]u and [x]v represent the horizontal and vertical coordi-
nates of the vector x respectively.
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